
exdir Documentation

Svenn-Arne Dragly, Milad H. Mobarhan, Mikkel E. Lepperød

Feb 23, 2021

CONTENTS

1 Installation 3

2 File Objects 5

3 Groups 7

4 Datasets 11

5 Raw 13

6 Attributes 15

7 Plugins 17

8 Specification 19

9 Install 21

10 Quick usage example 23

11 Core concepts 25

12 Groups and hierarchical organization 27

13 Attributes 29

14 Acknowledgements 31

15 References 33

Index 35

i

ii

exdir Documentation

The Experimental Directory Structure (Exdir) is a proposed, open file format specification for experimental pipelines.
Exdir uses the same abstractions as HDF5 and is compatible with the HDF5 Abstract Data Model, but stores data and
metadata in directories instead of in a single file. Exdir uses file system directories to represent the hierarchy, with
metadata stored in human-readable YAML files, datasets stored in binary NumPy files, and raw data stored directly in
subdirectories. Furthermore, storing data in multiple files makes it easier to track for version control systems. Exdir
is not a file format in itself, but a specification for organizing files in a directory structure. With the publication of
Exdir, we invite the scientific community to join the development to create an open specification that will serve as
many needs as possible and as a foundation for open access to and exchange of data.

Exdir is described in detail in our reasearch paper:

Experimental Directory Structure (Exdir): An Alternative to HDF5 Without Introducing a New File Format.

CONTENTS 1

https://www.frontiersin.org/articles/10.3389/fninf.2018.00016/full

exdir Documentation

2 CONTENTS

CHAPTER

ONE

INSTALLATION

1.1 Pre-configured installation (recommended)

It’s strongly recommended that you use Anaconda to install exdir along with its compiled dependencies.

With Anaconda or Miniconda:

conda install -c cinpla exdir

3

http://continuum.io/downloads
http://conda.pydata.org/miniconda.html

exdir Documentation

4 Chapter 1. Installation

CHAPTER

TWO

FILE OBJECTS

class exdir.core.File(directory, mode=None, allow_remove=False, name_validation=None, plug-
ins=None)

Bases: exdir.core.group.Group

Exdir file object. A File is a special type of Group. See Group for documentation of inherited functions.

To create a File, call the File constructor with the name of the File you wish to create:

>>> import exdir
>>> import numpy as np
>>> f = exdir.File("mytestfile.exdir")

The File object f now points to the root folder in the exdir file structure. You can add groups and datasets to
it as follows:

>>> my_group = f.require_group("my_group")
>>> a = np.arange(100)
>>> dset = f.require_dataset("my_data", data=a)

The data is immediately written to disk.

Parameters

• directory – Name of the directory to be opened or created as an Exdir File.

• mode (str, optional) – A file mode string that defines the read/write behavior. See open() for
information about the different modes.

• allow_remove (bool) – Set to True if you want mode ‘w’ to remove existing trees if they
exist. This False by default to avoid removing entire directory trees by mistake.

• name_validation (str, function, optional) – Set the validation mode for names. Can be a
function that takes a name and returns True if the name is valid or one of the following
built-in validation modes:

– ‘strict’: only allow numbers, lowercase letters, underscore (_) and dash (-)

– ‘simple’: allow numbers, lowercase letters, uppercase letters, underscore (_) and dash (-),
check if any file exists with same name in any case.

– ‘thorough’: verify if name is safe on all platforms, check if any file exists with same name
in any case.

– ‘none’: allows any filename

The default is ‘thorough’.

• plugins (list, optional) – A list of instantiated plugins or modules with a plugins() function
that returns a list of plugins.

5

exdir Documentation

close()
Closes the File object. Sets the OpenMode to FILE_CLOSED which denies access to any attribute or child

create_group(name)
Create a group with the given name or absolute path.

See Group for more details.

Note: Creating groups with absolute paths is only allowed on File objects and not on Group objects in
general.

require_group(name)
Open an existing subgroup or create one if it does not exist.

See Group for more details.

Note: Creating groups with absolute paths is only allowed on File objects and not on Group objects in
general.

6 Chapter 2. File Objects

CHAPTER

THREE

GROUPS

class exdir.core.Group(root_directory, parent_path, object_name, file)
Bases: exdir.core.exdir_object.Object

Container of other groups and datasets.

create_dataset(name, shape=None, dtype=None, data=None, fillvalue=None)
Create a dataset. This will create a folder on the filesystem with the given name, an exdir.yaml file that
identifies the folder as an Exdir Dataset, and a data.npy file that contains the data.

Parameters

• name (str) – Name of the dataset to be created.

• shape (tuple, semi-optional) – Shape of the dataset to be created. Must be set together
with dtype. Cannot be set together with data, but must be set if data is not set.

• dtype (numpy.dtype) – Data type of the dataset to be created. Must be set together with
shape. Cannot be set together with data, but must be set if data is not set.

• data (scalar, list, numpy.array or plugin-supported type, semi-optional) – Data to be in-
serted in the created dataset. Cannot be set together with dtype or shape, but must be set if
dtype and shape are not set.

• fillvalue (scalar) – Used to create a dataset with the given shape and type with the initial
value of fillvalue.

Returns

Return type The newly created Dataset.

Raises FileExistsError – If an object with the same name already exists.

See also:

require_dataset

create_group(name)
Create a group. This will create a folder on the filesystem with the given name and an exdir.yaml file that
identifies the folder as a group. A group can contain multiple groups and datasets.

Parameters name (str) – Name of the subgroup. Must follow the naming convention of the
parent Exdir File.

Raises FileExistsError – If an object with the same name already exists.

Returns

Return type The newly created Group.

7

exdir Documentation

See also:

require_group

get(key)
Get an object in the group. :Parameters: key (str) – The key of the desired object

Returns

Return type Value or None if object does not exist.

items()

Returns A view of the keys and objects in the group.

Return type ItemsView

keys()

Returns A view of the names of the objects in the group.

Return type KeysView

require_dataset(name, shape=None, dtype=None, exact=False, data=None, fillvalue=None)
Open an existing dataset or create it if it does not exist.

Parameters

• name (str) – Name of the dataset. Must follow naming convention of parent Exdir File.

• shape (np.array, semi-optional) – Shape of the dataset. Must be set together with dtype.
Cannot be set together with data, but must be set if data is not set. Will be used to verify
that an existing dataset has the same shape or to create a new dataset of the given shape.
See also exact.

• dtype (np.dtype, semi-optional) – NumPy datatype of the dataset. Must be set together
with shape. Cannot be set together with data, but must be set if data is not set. Will be
used to verify that an existing dataset has the same or a convertible dtype or to create a
new dataset with the given dtype. See also exact.

• exact (bool, optional) – Only used if the dataset already exists. If exact is False, the shape
must match the existing dataset and the data type must be convertible between the existing
and requested data type. If exact is True, the shape and dtype must match exactly. The
default is False. See also shape, dtype and data.

• data (list, np.array, semi-optional) – The data that will be used to create the dataset if
it does not already exist. The shape and dtype of data will be compared to the existing
dataset if it already exists. See shape, dtype and exact.

• fillvalue (scalar) – Used to create a dataset with the given shape and type with the initial
value of fillvalue.

require_group(name)
Open an existing subgroup or create one if it does not exist. This might create a new subfolder on the file
system.

Parameters name (str) – Name of the subgroup. Must follow the naming convention of the
parent Exdir File.

Returns

Return type The existing or created group.

See also:

create_group

8 Chapter 3. Groups

exdir Documentation

values()

Returns A view of the objects in the group.

Return type ValuesView

9

exdir Documentation

10 Chapter 3. Groups

CHAPTER

FOUR

DATASETS

This is data set class. It has class exdir.core.Dataset:

class exdir.core.Dataset(root_directory, parent_path, object_name, file)
Bases: exdir.core.exdir_object.Object

Dataset class

Warning: This class modifies the view and it is possible to overwrite an existing dataset, which is different
from the behavior in h5py.

property data
Property that gives access the entire dataset. Equivalent to calling dataset[:].

Returns The entire dataset.

Return type numpy.memmap

property dtype
The NumPy data type of the dataset. Equivalent to calling dataset[:].dtype.

Returns The NumPy data type of the dataset.

Return type numpy.dtype

set_data(data)

Warning: Deprecated convenience function. Use dataset.data = data instead.

property shape
The shape of the dataset. Equivalent to calling dataset[:].shape.

Returns The shape of the dataset.

Return type tuple

property size
The size of the dataset. Equivalent to calling dataset[:].size.

Returns The size of the dataset.

Return type np.int64

property value
Convenience alias for the data property.

11

exdir Documentation

Warning: This property is only provided as a convenience to make the API interoperable with h5py.
We recommend to use data instead of value.

12 Chapter 4. Datasets

CHAPTER

FIVE

RAW

class exdir.core.Raw(root_directory, parent_path, object_name, file)
Bases: exdir.core.exdir_object.Object

Raw objects are simple folders with any content.

Raw objects currently have no features apart from showing their path.

13

exdir Documentation

14 Chapter 5. Raw

CHAPTER

SIX

ATTRIBUTES

class exdir.core.Attribute(parent, mode, file, path=None)
Bases: object

The attribute object is a dictionary-like object that is used to access the attributes stored in the attributes.
yaml file for a given Exdir Object.

The Attribute object should not be created, but retrieved by accessing the .attrs property of any Exdir Object,
such as a Dataset, Group or File.

property filename

Returns

Return type The filename of the attributes.yaml file.

items()

Returns

Return type a new view of the Attribute’s items.

keys()

Returns

Return type a new view of the Attribute’s keys.

to_dict()
Convert the Attribute into a standard Python dictionary.

update(value)
Update the Attribute with the key/value pairs from value, overwriting existing keys.

This function accepts either another Attribute object, a dictionary object or an iterable of key/value pairs

values()

Returns

Return type a new view of the Attribute’s values.

15

exdir Documentation

16 Chapter 6. Attributes

CHAPTER

SEVEN

PLUGINS

The functionality of Exdir can be extended with plugins. These allow modifying the behavior of Exdir when enabled.
For instance, dataset and attribute plugins can perform pre- and post-processing of data during reading and writing
operations. Note that plugins do not change the underlying specifications of Exdir. Plugins are intended to perform
verification of data consistency, and to provide convenient mapping from general in-memory objects to objects that
can be stored in the Exdir format and back again. Some plugins are provided in the exdir.plugins module, while new
plugins can be defined by Exdir users or package developers.

One of the built-in plugins provides experimental support for units using the quantities package:

>>> import exdir
>>> import exdir.plugins.quantities
>>> import quantities as pq
>>> f = exdir.File("test.exdir", plugins=[exdir.plugins.quantities])
>>> q = np.array([1,2,3])*pq.mV
>>> dset_q = f.create_dataset("quantities_array", data=q)
>>> dset_q[:]
array([1., 2., 3.]) * mV

As shown in the above example, a plugin is enabled when creating a File object by passing the plugin to the plugins
argument.

To create a custom plugin, one of the handler classes in exdir.plugin_interface must be inherited. The abstract handler
classes are named after the object type you want to create a handler for. In this example we have a simplified Quantity
class, which only contains a magnitude and a corresponding unit:

>>> class Quantity:
>>> def __init__(self, magnitude, unit):
>>> self.magnitude = magnitude
>>> self.unit = unit

Below, we create a plugin that enables us to directly use a Quantity object as a Dataset in Exdir. We do this by
inheriting from exdir.plugin_interface.Dataset and overloading prepare_write and prepare_read:

>>> import exdir
>>> class DatasetQuantity(exdir.plugin_interface.Dataset):
>>> def prepare_write(self, dataset_data):
>>> magnitude = dataset_data.data.magnitude
>>> unit = dataset_data.data.unit
>>>
>>> dataset_data.data = magnitude
>>> dataset_data.attrs = {"unit": unit}
>>>
>>> return dataset_data
>>>

(continues on next page)

17

exdir Documentation

(continued from previous page)

>>> def prepare_read(self, dataset_data):
>>> unit = dataset_data.attrs["unit"]
>>> magnitude = dataset_data.data
>>>
>>> dataset_data.data = Quantity(magnitude, unit)
>>>
>>> return dataset_data

The overloaded functions take dataset_data as an argument. This has the data, attrs, and meta properties. The property
attrs is a dictionary with optional attributes, while meta is a dictionary with information about the plugin.

In prepare_write, the magnitude and unit of the data is translated to a value (numeric or numpy.ndarray) and an
attribute (dictionary-like) that then can be written to file. prepare_read receives the data from the NumPy file and the
attributes from the YAML file, and uses these to reconstruct a Quantity object.

We create a plugin that uses this handler as follows:

>>> my_plugin = exdir.plugin_interface.Plugin(
>>> name="dataset_quantity",
>>> dataset_plugins=[DatasetQuantity()]
>>>)

The plugin is enabled when opening a File by passing it to the plugins parameter:

>>> f = exdir.File("test.exdir", plugins=[my_plugin])
>>> dset = f.create_dataset("test", data=Quantity(1.5, "meter"))

18 Chapter 7. Plugins

CHAPTER

EIGHT

SPECIFICATION

exdir is not a file format in itself, but rather a specification for a directory structure with NumPy and YAML files.

example.exdir (File, folder)
attributes.yaml (-, file)
exdir.yaml (-, file)

dataset1 (Dataset, folder)
data.npy (-, file)
attributes.yaml (-, file)
exdir.yaml (-, file)

group1 (Group, folder)
attributes.yaml (-, file)
exdir.yaml (-, file)

dataset2 (Dataset, folder)
data.npy (-, file)
attributes.yaml (-, file)
exdir.yaml (-, file)

raw (Raw, folder)
image0001.tif (-, file)
image0002.tif (-, file)
...

The above structure shows the name of the object, the type of the object in exdir and the type of the object on the file
system as follows:

` [name] ([exdir type], [file system type]) `

A dash (-) indicates that the object doesn’t have a separate internal representation in the format, but is used indirectly.
It is however explicitly stored in the file system.

19

exdir Documentation

20 Chapter 8. Specification

CHAPTER

NINE

INSTALL

With Anaconda or Miniconda:

conda install -c cinpla exdir

For more, see Installation.

21

http://continuum.io/downloads
http://conda.pydata.org/miniconda.html

exdir Documentation

22 Chapter 9. Install

CHAPTER

TEN

QUICK USAGE EXAMPLE

>>> import exdir
>>> import numpy as np
>>> f = exdir.File("mytestfile.exdir")

The File object points to the root folder in the exdir file structure. You can add groups and datasets to it.

>>> my_group = f.require_group("my_group")
>>> a = np.arange(100)
>>> dset = f.require_dataset("my_data", data=a)

These can later be accessed with square brackets:

>>> f["my_data"][10]
10

Groups can hold other groups or datasets:

>>> subgroup = my_group.require_group("subgroup")
>>> subdata = subgroup.require_dataset("subdata", data=a)

Datasets support array-style slicing:

>>> dset[0:100:10]
memmap([0, 10, 20, 30, 40, 50, 60, 70, 80, 90])

Attributes can be added to files, groups and datasets:

>>> f.attrs["description"] = "My first exdir file"
>>> my_group.attrs["meaning_of_life"] = 42
>>> dset.attrs["trial_number"] = 12
>>> f.attrs["description"]
'My first exdir file'

23

exdir Documentation

24 Chapter 10. Quick usage example

CHAPTER

ELEVEN

CORE CONCEPTS

An exdir object contains two types of objects: datasets, which are array-like collections of data, and groups, which
are directories containing datasets and other groups.

An exdir directory is created by:

>>> import exdir
>>> import numpy as np
>>> f = exdir.File("myfile.exdir", "w")

The File object containes many useful methods including exdir.core.Group.require_dataset():

>>> data = np.arange(100)
>>> dset = f.require_dataset("mydataset", data=data)

The created object is not an array but an exdir dataset. Like NumPy arrays, datasets have a shape:

>>> dset.shape
(100,)

Also array-style slicing is supported:

>>> dset[0]
0
>>> dset[10]
10
>>> dset[0:100:10]
memmap([0, 10, 20, 30, 40, 50, 60, 70, 80, 90])

For more, see File Objects and Datasets.

25

exdir Documentation

26 Chapter 11. Core concepts

CHAPTER

TWELVE

GROUPS AND HIERARCHICAL ORGANIZATION

Every object in an exdir directory has a name, and they’re arranged in a POSIX-style hierarchy with /-separators:

>>> dset.name
'/mydataset'

The “directory” in this system are called groups. The File object we created is itself a group, in this case the root
group, named /

>>> f.name
'/'

Creating a subgroup is done by using exdir.core.Group.require_group() method:

>>> grp = f.require_group("subgroup")

All exdir.core.Group objects also have the require_* methods like File:

>>> dset2 = grp.require_dataset("another_dataset", data=data)
>>> dset2.name
'/subgroup/another_dataset'

You retrieve objects in the file using the item-retrieval syntax:

>>> dataset_three = f['subgroup/another_dataset']

Iterating over a group provides the names of its members:

>>> for name in f:
... print(name)
mydataset
subgroup

Containership testing also uses names:

>>> "mydataset" in f
True
>>> "somethingelse" in f
False

You can even use full path names:

>>> "subgroup/another_dataset" in f
True

(continues on next page)

27

exdir Documentation

(continued from previous page)

>>> "subgroup/somethingelse" in f
False

There are also the familiar exdir.core.Group.keys(), exdir.core.Group.values(), exdir.core.
Group.items() and exdir.core.Group.iter() methods, as well as exdir.core.Group.get().

For more, see Groups.

28 Chapter 12. Groups and hierarchical organization

CHAPTER

THIRTEEN

ATTRIBUTES

With exdir you can store metadata right next to the data it describes. All groups and datasets can have attributes which
are descibed by exdir.core.attributes().

Attributes are accessed through the attrs proxy object, which again implements the dictionary interface:

>>> dset.attrs['temperature'] = 99.5
>>> dset.attrs['temperature']
99.5
>>> 'temperature' in dset.attrs
True

For more, see Attributes.

29

exdir Documentation

30 Chapter 13. Attributes

CHAPTER

FOURTEEN

ACKNOWLEDGEMENTS

The development of Exdir owes a great deal to other standardization efforts in science in general and neuroscience
in particular, among them the contributors to HDF5, NumPy, YAML, PyYAML, ruamel-yaml, SciPy, Klusta Kwik,
NeuralEnsemble, and Neurodata Without Borders.

31

exdir Documentation

32 Chapter 14. Acknowledgements

CHAPTER

FIFTEEN

REFERENCES

• genindex

• search

33

exdir Documentation

34 Chapter 15. References

INDEX

A
Attribute (class in exdir.core), 15

C
close() (exdir.core.File method), 6
create_dataset() (exdir.core.Group method), 7
create_group() (exdir.core.File method), 6
create_group() (exdir.core.Group method), 7

D
data() (exdir.core.Dataset property), 11
Dataset (class in exdir.core), 11
dtype() (exdir.core.Dataset property), 11

F
File (class in exdir.core), 5
filename() (exdir.core.Attribute property), 15

G
get() (exdir.core.Group method), 8
Group (class in exdir.core), 7

I
items() (exdir.core.Attribute method), 15
items() (exdir.core.Group method), 8

K
keys() (exdir.core.Attribute method), 15
keys() (exdir.core.Group method), 8

R
Raw (class in exdir.core), 13
require_dataset() (exdir.core.Group method), 8
require_group() (exdir.core.File method), 6
require_group() (exdir.core.Group method), 8

S
set_data() (exdir.core.Dataset method), 11
shape() (exdir.core.Dataset property), 11
size() (exdir.core.Dataset property), 11

T
to_dict() (exdir.core.Attribute method), 15

U
update() (exdir.core.Attribute method), 15

V
value() (exdir.core.Dataset property), 11
values() (exdir.core.Attribute method), 15
values() (exdir.core.Group method), 8

35

	Installation
	File Objects
	Groups
	Datasets
	Raw
	Attributes
	Plugins
	Specification
	Install
	Quick usage example
	Core concepts
	Groups and hierarchical organization
	Attributes
	Acknowledgements
	References
	Index

