

Welcome to Exdir’s documentation!

The Experimental Directory Structure (Exdir) is a proposed, open file format specification for experimental pipelines.
Exdir uses the same abstractions as HDF5 and is compatible with the HDF5 Abstract Data Model, but stores data and metadata in directories instead of in a single file.
Exdir uses file system directories to represent the hierarchy, with metadata stored in human-readable YAML files, datasets stored in binary NumPy files, and raw data stored directly in subdirectories.
Furthermore, storing data in multiple files makes it easier to track for version control systems.
Exdir is not a file format in itself, but a specification for organizing files in a directory structure.
With the publication of Exdir, we invite the scientific community to join the development to create an open specification that will serve as many needs as possible and as a foundation for open access to and exchange of data.

Exdir is described in detail in our reasearch paper:

Experimental Directory Structure (Exdir): An Alternative to HDF5 Without Introducing a New File Format [https://www.frontiersin.org/articles/10.3389/fninf.2018.00016/full].

Specification

exdir is not a file format in itself, but rather a specification for a directory structure
with NumPy and YAML files.

example.exdir (File, folder)
│ attributes.yaml (-, file)
│ exdir.yaml (-, file)
│
├── dataset1 (Dataset, folder)
│ ├── data.npy (-, file)
│ ├── attributes.yaml (-, file)
│ └── exdir.yaml (-, file)
│
└── group1 (Group, folder)
 ├── attributes.yaml (-, file)
 ├── exdir.yaml (-, file)
 │
 └── dataset2 (Dataset, folder)
 ├── data.npy (-, file)
 ├── attributes.yaml (-, file)
 ├── exdir.yaml (-, file)
 │
 └── raw (Raw, folder)
 ├── image0001.tif (-, file)
 ├── image0002.tif (-, file)
 └── ...

The above structure shows the name of the object, the type of the object in exdir and
the type of the object on the file system as follows:

`
[name] ([exdir type], [file system type])
`

A dash (-) indicates that the object doesn’t have a separate internal
representation in the format, but is used indirectly.
It is however explicitly stored in the file system.

Install

With Anaconda [http://continuum.io/downloads] or
Miniconda [http://conda.pydata.org/miniconda.html]:

conda install -c cinpla exdir

For more, see Installation.

Quick usage example

>>> import exdir
>>> import numpy as np
>>> f = exdir.File("mytestfile.exdir")

The File object points to the root folder in the exdir file
structure.
You can add groups and datasets to it.

>>> my_group = f.require_group("my_group")
>>> a = np.arange(100)
>>> dset = f.require_dataset("my_data", data=a)

These can later be accessed with square brackets:

>>> f["my_data"][10]
10

Groups can hold other groups or datasets:

>>> subgroup = my_group.require_group("subgroup")
>>> subdata = subgroup.require_dataset("subdata", data=a)

Datasets support array-style slicing:

>>> dset[0:100:10]
memmap([0, 10, 20, 30, 40, 50, 60, 70, 80, 90])

Attributes can be added to files, groups and datasets:

>>> f.attrs["description"] = "My first exdir file"
>>> my_group.attrs["meaning_of_life"] = 42
>>> dset.attrs["trial_number"] = 12
>>> f.attrs["description"]
'My first exdir file'

Core concepts

An exdir object contains two types of objects: datasets, which are
array-like collections of data, and groups, which are directories containing
datasets and other groups.

An exdir directory is created by:

>>> import exdir
>>> import numpy as np
>>> f = exdir.File("myfile.exdir", "w")

The File object containes many useful methods including exdir.core.Group.require_dataset():

>>> data = np.arange(100)
>>> dset = f.require_dataset("mydataset", data=data)

The created object is not an array but an exdir dataset.
Like NumPy arrays, datasets have a shape:

>>> dset.shape
(100,)

Also array-style slicing is supported:

>>> dset[0]
0
>>> dset[10]
10
>>> dset[0:100:10]
memmap([0, 10, 20, 30, 40, 50, 60, 70, 80, 90])

For more, see File Objects and Datasets.

Groups and hierarchical organization

Every object in an exdir directory has a name, and they’re arranged in a POSIX-style hierarchy with /-separators:

>>> dset.name
'/mydataset'

The “directory” in this system are called groups.
The File object we created is itself a group, in this case the root group, named /

>>> f.name
'/'

Creating a subgroup is done by using exdir.core.Group.require_group() method:

>>> grp = f.require_group("subgroup")

All exdir.core.Group objects also have the require_* methods like File:

>>> dset2 = grp.require_dataset("another_dataset", data=data)
>>> dset2.name
'/subgroup/another_dataset'

You retrieve objects in the file using the item-retrieval syntax:

>>> dataset_three = f['subgroup/another_dataset']

Iterating over a group provides the names of its members:

>>> for name in f:
... print(name)
mydataset
subgroup

Containership testing also uses names:

>>> "mydataset" in f
True
>>> "somethingelse" in f
False

You can even use full path names:

>>> "subgroup/another_dataset" in f
True
>>> "subgroup/somethingelse" in f
False

There are also the familiar exdir.core.Group.keys(), exdir.core.Group.values(), exdir.core.Group.items() and
exdir.core.Group.iter() methods, as well as exdir.core.Group.get().

For more, see Groups.

Attributes

With exdir you can store metadata right next to the data it describes.
All groups and datasets can have attributes which are descibed by exdir.core.attributes().

Attributes are accessed through the attrs proxy object, which again
implements the dictionary interface:

>>> dset.attrs['temperature'] = 99.5
>>> dset.attrs['temperature']
99.5
>>> 'temperature' in dset.attrs
True

For more, see Attributes.

Acknowledgements

The development of Exdir owes a great deal to other standardization efforts in science in general and neuroscience in particular,
among them the contributors to HDF5, NumPy, YAML, PyYAML, ruamel-yaml, SciPy, Klusta Kwik, NeuralEnsemble, and Neurodata Without Borders.

References

	Index

	Search Page

Installation

Pre-configured installation (recommended)

It’s strongly recommended that you use Anaconda to install exdir along with its compiled dependencies.

With Anaconda [http://continuum.io/downloads] or
Miniconda [http://conda.pydata.org/miniconda.html]:

conda install -c cinpla exdir

File Objects

	
class exdir.core.File(directory, mode=None, allow_remove=False, name_validation=None, plugins=None)

	Bases: exdir.core.group.Group

Exdir file object.
A File is a special type of Group.
See Group for documentation of inherited functions.

To create a File, call the File constructor with the name of the File you wish to create:

>>> import exdir
>>> import numpy as np
>>> f = exdir.File("mytestfile.exdir")

The File object f now points to the root folder in the exdir file
structure.
You can add groups and datasets to it as follows:

>>> my_group = f.require_group("my_group")
>>> a = np.arange(100)
>>> dset = f.require_dataset("my_data", data=a)

The data is immediately written to disk.

	Parameters

	
	directory – Name of the directory to be opened or created as an Exdir File.

	mode (str, optional) – A file mode string that defines the read/write behavior.
See open() for information about the different modes.

	allow_remove (bool) – Set to True if you want mode ‘w’ to remove existing trees if they
exist. This False by default to avoid removing entire directory
trees by mistake.

	name_validation (str, function, optional) – Set the validation mode for names.
Can be a function that takes a name and returns True if the name
is valid or one of the following built-in validation modes:

	‘strict’: only allow numbers, lowercase letters, underscore (_) and dash (-)

	‘simple’: allow numbers, lowercase letters, uppercase letters, underscore (_) and dash (-), check if any file exists with same name in any case.

	‘thorough’: verify if name is safe on all platforms, check if any file exists with same name in any case.

	‘none’: allows any filename

The default is ‘thorough’.

	plugins (list, optional) – A list of instantiated plugins or modules with a plugins()
function that returns a list of plugins.

	
close()

	Closes the File object.
Sets the OpenMode to FILE_CLOSED which denies access to any attribute or
child

	
create_group(name)

	Create a group with the given name or absolute path.

See Group for more details.

Note

Creating groups with absolute paths is only allowed on File objects and
not on Group objects in general.

	
require_group(name)

	Open an existing subgroup or create one if it does not exist.

See Group for more details.

Note

Creating groups with absolute paths is only allowed on File objects and
not on Group objects in general.

Groups

	
class exdir.core.Group(root_directory, parent_path, object_name, file)

	Bases: exdir.core.exdir_object.Object

Container of other groups and datasets.

	
create_dataset(name, shape=None, dtype=None, data=None, fillvalue=None)

	Create a dataset. This will create a folder on the filesystem with the given
name, an exdir.yaml file that identifies the folder as an Exdir Dataset,
and a data.npy file that contains the data.

	Parameters

	
	name (str) – Name of the dataset to be created.

	shape (tuple, semi-optional) – Shape of the dataset to be created.
Must be set together with dtype.
Cannot be set together with data, but must be set if data is not set.

	dtype (numpy.dtype) – Data type of the dataset to be created.
Must be set together with shape.
Cannot be set together with data, but must be set if data is not set.

	data (scalar, list, numpy.array or plugin-supported type, semi-optional) – Data to be inserted in the created dataset.
Cannot be set together with dtype or shape, but must be set if
dtype and shape are not set.

	fillvalue (scalar) – Used to create a dataset with the given shape and type with the
initial value of fillvalue.

	Returns

	

	Return type

	The newly created Dataset.

	Raises

	FileExistsError – If an object with the same name already exists.

See also

require_dataset

	
create_group(name)

	Create a group. This will create a folder on the filesystem with the
given name and an exdir.yaml file that identifies the folder as a
group. A group can contain multiple groups and datasets.

	Parameters

	name (str) – Name of the subgroup. Must follow the naming convention of the parent Exdir File.

	Raises

	FileExistsError – If an object with the same name already exists.

	Returns

	

	Return type

	The newly created Group.

See also

require_group

	
get(key)

	Get an object in the group.
:Parameters: key (str) – The key of the desired object

	Returns

	

	Return type

	Value or None if object does not exist.

	
items()

	
	Returns

	A view of the keys and objects in the group.

	Return type

	ItemsView

	
keys()

	
	Returns

	A view of the names of the objects in the group.

	Return type

	KeysView

	
require_dataset(name, shape=None, dtype=None, exact=False, data=None, fillvalue=None)

	Open an existing dataset or create it if it does not exist.

	Parameters

	
	name (str) – Name of the dataset. Must follow naming convention of parent Exdir File.

	shape (np.array, semi-optional) – Shape of the dataset. Must be set together with dtype.
Cannot be set together with data, but must be set if data is not set.
Will be used to verify that an existing dataset has the same shape or
to create a new dataset of the given shape.
See also exact.

	dtype (np.dtype, semi-optional) – NumPy datatype of the dataset. Must be set together with shape.
Cannot be set together with data, but must be set if data is not set.
Will be used to verify that an existing dataset has the same or a
convertible dtype or to create a new dataset with the given dtype.
See also exact.

	exact (bool, optional) – Only used if the dataset already exists.
If exact is False, the shape must match the existing dataset and
the data type must be convertible between the existing and requested
data type.
If exact is True, the shape and dtype must match exactly.
The default is False.
See also shape, dtype and data.

	data (list, np.array, semi-optional) – The data that will be used to create the dataset if it does not already exist.
The shape and dtype of data will be compared to the existing dataset if it already exists.
See shape, dtype and exact.

	fillvalue (scalar) – Used to create a dataset with the given shape and type with the
initial value of fillvalue.

	
require_group(name)

	Open an existing subgroup or create one if it does not exist.
This might create a new subfolder on the file system.

	Parameters

	name (str) – Name of the subgroup. Must follow the naming convention of the parent Exdir File.

	Returns

	

	Return type

	The existing or created group.

See also

create_group

	
values()

	
	Returns

	A view of the objects in the group.

	Return type

	ValuesView

Datasets

This is data set class. It has class exdir.core.Dataset:

	
class exdir.core.Dataset(root_directory, parent_path, object_name, file)

	Bases: exdir.core.exdir_object.Object

Dataset class

Warning

This class modifies the view and it is possible to overwrite
an existing dataset, which is different from the behavior in h5py.

	
property data

	Property that gives access the entire dataset.
Equivalent to calling dataset[:].

	Returns

	The entire dataset.

	Return type

	numpy.memmap

	
property dtype

	The NumPy data type of the dataset.
Equivalent to calling dataset[:].dtype.

	Returns

	The NumPy data type of the dataset.

	Return type

	numpy.dtype

	
set_data(data)

	
Warning

Deprecated convenience function.
Use dataset.data = data instead.

	
property shape

	The shape of the dataset.
Equivalent to calling dataset[:].shape.

	Returns

	The shape of the dataset.

	Return type

	tuple

	
property size

	The size of the dataset.
Equivalent to calling dataset[:].size.

	Returns

	The size of the dataset.

	Return type

	np.int64

	
property value

	Convenience alias for the data property.

Warning

This property is only provided as a convenience to make the API
interoperable with h5py.
We recommend to use data instead of value.

Raw

	
class exdir.core.Raw(root_directory, parent_path, object_name, file)

	Bases: exdir.core.exdir_object.Object

Raw objects are simple folders with any content.

Raw objects currently have no features apart from showing their path.

Attributes

	
class exdir.core.Attribute(parent, mode, file, path=None)

	Bases: object

The attribute object is a dictionary-like object that is used to access
the attributes stored in the attributes.yaml file for a given
Exdir Object.

The Attribute object should not be created, but retrieved by accessing
the .attrs property of any Exdir Object, such as a Dataset,
Group or File.

	
property filename

	
	Returns

	

	Return type

	The filename of the attributes.yaml file.

	
items()

	
	Returns

	

	Return type

	a new view of the Attribute’s items.

	
keys()

	
	Returns

	

	Return type

	a new view of the Attribute’s keys.

	
to_dict()

	Convert the Attribute into a standard Python dictionary.

	
update(value)

	Update the Attribute with the key/value pairs from value, overwriting existing keys.

This function accepts either another Attribute object, a dictionary object or an iterable of key/value pairs

	
values()

	
	Returns

	

	Return type

	a new view of the Attribute’s values.

Plugins

The functionality of Exdir can be extended with plugins.
These allow modifying the behavior of Exdir when enabled.
For instance, dataset and attribute plugins can perform pre- and post-processing of data during
reading and writing operations.
Note that plugins do not change the underlying specifications of Exdir.
Plugins are intended to perform verification of data consistency,
and to provide convenient mapping from general in-memory objects to objects that can be stored in
the Exdir format and back again.
Some plugins are provided in the exdir.plugins module,
while new plugins can be defined by Exdir users or package developers.

One of the built-in plugins provides experimental support for units using the quantities package:

>>> import exdir
>>> import exdir.plugins.quantities
>>> import quantities as pq
>>> f = exdir.File("test.exdir", plugins=[exdir.plugins.quantities])
>>> q = np.array([1,2,3])*pq.mV
>>> dset_q = f.create_dataset("quantities_array", data=q)
>>> dset_q[:]
array([1., 2., 3.]) * mV

As shown in the above example, a plugin is enabled when creating a File object by passing the
plugin to the plugins argument.

To create a custom plugin, one of the handler classes in exdir.plugin_interface must be inherited.
The abstract handler classes are named after the object type you want to create a handler for.
In this example we have a simplified Quantity class,
which only contains a magnitude and a corresponding unit:

>>> class Quantity:
>>> def __init__(self, magnitude, unit):
>>> self.magnitude = magnitude
>>> self.unit = unit

Below, we create a plugin that enables us to directly use a Quantity object as a Dataset in
Exdir.
We do this by inheriting from exdir.plugin_interface.Dataset and overloading prepare_write and
prepare_read:

>>> import exdir
>>> class DatasetQuantity(exdir.plugin_interface.Dataset):
>>> def prepare_write(self, dataset_data):
>>> magnitude = dataset_data.data.magnitude
>>> unit = dataset_data.data.unit
>>>
>>> dataset_data.data = magnitude
>>> dataset_data.attrs = {"unit": unit}
>>>
>>> return dataset_data
>>>
>>> def prepare_read(self, dataset_data):
>>> unit = dataset_data.attrs["unit"]
>>> magnitude = dataset_data.data
>>>
>>> dataset_data.data = Quantity(magnitude, unit)
>>>
>>> return dataset_data

The overloaded functions take dataset_data as an argument.
This has the data, attrs, and meta properties.
The property attrs is a dictionary with optional attributes,
while meta is a dictionary with information about the plugin.

In prepare_write, the magnitude and unit of the data is translated to a value (numeric or
numpy.ndarray) and an attribute (dictionary-like) that then can be written to file.
prepare_read receives the data from the NumPy file and the attributes from the YAML file,
and uses these to reconstruct a Quantity object.

We create a plugin that uses this handler as follows:

>>> my_plugin = exdir.plugin_interface.Plugin(
>>> name="dataset_quantity",
>>> dataset_plugins=[DatasetQuantity()]
>>>)

The plugin is enabled when opening a File by passing it to the plugins parameter:

>>> f = exdir.File("test.exdir", plugins=[my_plugin])
>>> dset = f.create_dataset("test", data=Quantity(1.5, "meter"))

Index

 A
 | C
 | D
 | F
 | G
 | I
 | K
 | R
 | S
 | T
 | U
 | V

A

 	
 	Attribute (class in exdir.core)

C

 	
 	close() (exdir.core.File method)

 	create_dataset() (exdir.core.Group method)

 	
 	create_group() (exdir.core.File method)

 	(exdir.core.Group method)

D

 	
 	data() (exdir.core.Dataset property)

 	
 	Dataset (class in exdir.core)

 	dtype() (exdir.core.Dataset property)

F

 	
 	File (class in exdir.core)

 	
 	filename() (exdir.core.Attribute property)

G

 	
 	get() (exdir.core.Group method)

 	
 	Group (class in exdir.core)

I

 	
 	items() (exdir.core.Attribute method)

 	(exdir.core.Group method)

K

 	
 	keys() (exdir.core.Attribute method)

 	(exdir.core.Group method)

R

 	
 	Raw (class in exdir.core)

 	require_dataset() (exdir.core.Group method)

 	
 	require_group() (exdir.core.File method)

 	(exdir.core.Group method)

S

 	
 	set_data() (exdir.core.Dataset method)

 	
 	shape() (exdir.core.Dataset property)

 	size() (exdir.core.Dataset property)

T

 	
 	to_dict() (exdir.core.Attribute method)

U

 	
 	update() (exdir.core.Attribute method)

V

 	
 	value() (exdir.core.Dataset property)

 	
 	values() (exdir.core.Attribute method)

 	(exdir.core.Group method)

 nav.xhtml

 Table of Contents

 		
 Welcome to Exdir’s documentation!

_static/minus.png

_static/plus.png

_static/file.png

